首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   12篇
  2023年   2篇
  2022年   3篇
  2021年   10篇
  2020年   8篇
  2019年   5篇
  2018年   5篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   8篇
  2013年   10篇
  2012年   4篇
  2011年   5篇
  2010年   1篇
  2009年   5篇
  2008年   7篇
  2007年   10篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   5篇
  2002年   5篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1980年   1篇
排序方式: 共有130条查询结果,搜索用时 21 毫秒
1.
2.
3.
Ten diurnal raptor communities (Falconiformes) were studied in continental and peninsular situations, and on landbridge and oceanic islands of various sizes, from Southern India to Southern Vietnam and from Sri Lanka to Java. An index of abundance was derived from 1-km2 sample plots. A consistent decrease of species richness occurred from continent to peninsulas and to large landbridge islands, then more abruptly to oceanic islands. The impoverishment process was much faster for open habitat raptors than for forest species, and for rarest and most specialized raptors than for common and more generalist species. Large taxa survived on islands as well as smaller species. Specific habitat requirements, historical factors and forest fragmentation were probably more important determinants of community composition than land area itself. An insular syndrome was documented in forest species on islands, including significant examples of habitat niche expansion, interspecific segregation and density compensation. Some cases suggested that interspecific competition was involved. Such relaxation of habitat and density constraints may enhance the survival probability of these species on islands.  相似文献   
4.
Using the land‐bound vertebrates on the marine islands as model organisms, two metrics are presented that permit quantitative and succinct synopses of the ‘evolutionary maturity’ of the hosted faunal assemblages. In turn, these reflect the geo‐physical settings and geological developments of the substrates. The assemblage lineage‐taxonomy spectrum (ALTS) is based on the constituent lineages’ taxonomic distinctiveness and diversity. Individual lineages within assemblages can in most cases be assigned to one of six categories, LT1?LT6: LT1 is a non‐endemic taxon, whereas LT6 comprises multiple endemic genera from a family that arose elsewhere. If required, the scheme can be expanded: LT9 is an endemic order. The data can then be combined to provide an assemblage spectrum, for example, 00:08:38:30:08:15[ 13 ]. Here, the first six values denote the number of lineages assigned to each category expressed as percentages of the overall total, with the sum of the processed lineages listed as the seventh (in brackets and bold). The ALTS metric highlights efficiently the key features of a marine island's biological assemblage. Notably, the contrast between spectra for suites on geologically and geo‐physically varied island types can be striking, for instance the squamate suite on the young, proximate orogenic margin island of Taiwan is coded 78:16:05:00:00:00[ 37 ] whereas the one on the distantly located, Late Eocene composite terrane island of New Caledonia is 00:11:00:11:33:44[ 9 ]. To overcome the subjectivity that is inherent in assigning supraspecific ranks, an alternative assemblage lineage‐age spectrum (ALAS) is also introduced that makes use of the binary logarithm values of the colonization times of the island lineages (0–2, 2–4, … , 32–64, >64 Ma). It is represented using a seven‐plus‐two‐number code, for instance Madagascar's squamates are 00:06:00:00:19:62:12[ 19 ( 16 )]; most colonizations took place in the Palaeogene (66–23 Ma); there are 19 lineages, but only 16 are presently age‐dated. In addition to marine‐island biogeography studies, the ALTS–ALAS spectrum approach is potentially useful for encapsulating biotas in other sorts of insular setting (e.g. lakes, mountain tops), and for evaluating palaeogeographical models. Furthermore, it may help emphasize the conservation value of an island's faunal assemblage.  相似文献   
5.
The extrinsic determinants hypothesis emphasizes the essential role of environmental heterogeneity in species’ colonization. Consequently, high resident species diversity can increase community susceptibility to colonizations because good habitats may support more species that are functionally similar to colonizers. On the other hand, colonization success is also likely to depend on species traits. We tested the relative importance of environmental characteristics and species traits in determining colonization success using census data of 587 vascular plant species collected about 70 yr apart from 471 islands in the archipelago of SW Finland. More specifically, we explored potential new colonization as a function of island properties (e.g. location, area, habitat diversity, number of resident species per unit area), species traits (e.g. plant height, life-form, dispersal vector, Ellenberg indicator values, association with human impact), and species’ historical distributions (number of inhabited islands, nearest occurrence). Island properties and species’ historical distributions were more effective than plant traits in explaining colonization outcomes. Contrary to the extrinsic determinants hypothesis, colonization success was neither associated with resident species diversity nor habitat diversity per se, although colonization was lowest on sparsely vegetated islands. Our findings lead us to propose that while plant traits related to dispersal and establishment may enhance colonization, predictions of plant colonizations primarily require understanding of habitat properties and species’ historical distributions.  相似文献   
6.
7.
The Ryukyu Archipelago is located in the southwest of the Japanese islands and is composed of dozens of islands, grouped into the Miyako Islands, Yaeyama Islands, and Okinawa Islands. Based on the results of principal component analysis on genome-wide single-nucleotide polymorphisms, genetic differentiation was observed among the island groups of the Ryukyu Archipelago. However, a detailed population structure analysis of the Ryukyu Archipelago has not yet been completed. We obtained genomic DNA samples from 1,240 individuals living in the Miyako Islands, and we genotyped 665,326 single-nucleotide polymorphisms to infer population history within the Miyako Islands, including Miyakojima, Irabu, and Ikema islands. The haplotype-based analysis showed that populations in the Miyako Islands were divided into three subpopulations located on Miyakojima northeast, Miyakojima southwest, and Irabu/Ikema. The results of haplotype sharing and the D statistics analyses showed that the Irabu/Ikema subpopulation received gene flows different from those of the Miyakojima subpopulations, which may be related with the historically attested immigration during the Gusuku period (900 − 500 BP). A coalescent-based demographic inference suggests that the Irabu/Ikema population firstly split away from the ancestral Ryukyu population about 41 generations ago, followed by a split of the Miyako southwest population from the ancestral Ryukyu population (about 16 generations ago), and the differentiation of the ancestral Ryukyu population into two populations (Miyako northeast and Okinawajima populations) about seven generations ago. Such genetic information is useful for explaining the population history of modern Miyako people and must be taken into account when performing disease association studies.  相似文献   
8.
《Current biology : CB》2020,30(14):2777-2790.e4
  1. Download : Download high-res image (132KB)
  2. Download : Download full-size image
  相似文献   
9.
Insular gigantism—evolutionary increases in body size from small-bodied mainland ancestors—is a conceptually significant, but poorly studied, evolutionary phenomenon. Gigantism is widespread on Mediterranean islands, particularly among fossil and extant dormice. These include an extant giant population of Eliomys quercinus on Formentera, the giant Balearic genus †Hypnomys and the exceptionally large †Leithia melitensis of Pleistocene Sicily. We quantified patterns of cranial and mandibular shape and their relationships to head size (allometry) among mainland and insular dormouse populations, asking to what extent the morphology of island giants is explained by allometry. We find that gigantism in dormice is not simply an extrapolation of the allometric trajectory of their mainland relatives. Instead, a large portion of their distinctive cranial and mandibular morphology resulted from the population- or species-specific evolutionary shape changes. Our findings suggest that body size increases in insular giant dormice were accompanied by the evolutionary divergence of feeding adaptations. This complements other evidence of ecological divergence in these taxa, which span predominantly faunivorous to herbivorous diets. Our findings suggest that insular gigantism involves context-dependent phenotypic modifications, underscoring the highly distinctive nature of island faunas.  相似文献   
10.
Prior to the extinction wave that followed the human colonization of Oceania, flightless rails (Aves: Rallidae) were among the largest radiations of island birds, and perhaps the most species-rich example of convergent evolution in vertebrates. Insular flightless species are thought to have evolved from extant, volant species that colonized from continental sources and rapidly followed parallel adaptive pathways to flightlessness. The present study provides the first test of this model of speciation using genetic data sampled throughout the range of a putative ancestral species. Mitochondrial control region sequences from 71 individuals of the Gallirallus philippensis species complex reveal essentially no geographic structure within archipelagos and only weak structure among archipelagos, with no major genetic breaks except for birds sampled in the Philippines. Demographic tests of coalescent models support a recent rapid expansion into Oceania (including Australia) out of the Philippines approximately 20 000 years ago. The estimated coalescence of G. philippensis mitochondrial alleles approximately 33 000 years ago closely corresponds to the expansion of humans into the archipelagoes of Near Oceania, suggesting that humans may have facilitated its colonization by exterminating flightless competitors and clearing lowland forests. Phylogenetic analyses that included all G. philippensis haplotypes and samples from 11 single-island endemic flightless species of Gallirallus indicate that G. philippensis is polyphyletic, but is not the ancestor of most of its flightless congeners, as previously thought. Nuclear gene sequences (β-actin inron 3) suggest that G. philippensis polyphyly is at least partly due to hybridization. The flightless condition evolves in rails before reproductive isolation is complete.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 601–616.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号